Physics of microstructures enhancement of thin film evaporation heat transfer in microchannels flow boiling

نویسندگان

  • Sajjad Bigham
  • Abdolreza Fazeli
  • Saeed Moghaddam
چکیده

Performance enhancement of the two-phase flow boiling heat transfer process in microchannels through implementation of surface micro- and nanostructures has gained substantial interest in recent years. However, the reported results range widely from a decline to improvements in performance depending on the test conditions and fluid properties, without a consensus on the physical mechanisms responsible for the observed behavior. This gap in knowledge stems from a lack of understanding of the physics of surface structures interactions with microscale heat and mass transfer events involved in the microchannel flow boiling process. Here, using a novel measurement technique, the heat and mass transfer process is analyzed within surface structures with unprecedented detail. The local heat flux and dryout time scale are measured as the liquid wicks through surface structures and evaporates. The physics governing heat transfer enhancement on textured surfaces is explained by a deterministic model that involves three key parameters: the drying time scale of the liquid film wicking into the surface structures (τd), the heating length scale of the liquid film (δH) and the area fraction of the evaporating liquid film (Ar). It is shown that the model accurately predicts the optimum spacing between surface structures (i.e. pillars fabricated on the microchannel wall) in boiling of two fluids FC-72 and water with fundamentally different wicking characteristics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two Phase Heat Transfer Characteristics in a Vertical Small Diameter Tube at Sub Atmospheric Pressure

Two-phase heat transfer is experimentally examined through vertical small diameter tubes, D =1.45 and 2.8 mm using water under a pressure of 50 to 81 kPa and a natural circulation condition. The pool boiling correlation by Stephan-Abdelsalam and the thermosyphon boiling correlation by Imura, et al. predict the measured experimental data in the 2.8 mm tube with an error of -30%. A large heat tra...

متن کامل

Heat Transfer Mechanisms During Flow Boiling in Microchannels

The forces due to surface tension and momentum change during evaporation, in conjunction with the forces due to viscous shear and inertia, govern the two-phase flow patterns and the heat transfer characteristics during flow boiling in microchannels. These forces are analyzed in this paper, and two new nondimensional groups, K1 and K2 , relevant to flow boiling phenomenon are derived. These grou...

متن کامل

Pool Boiling Heat Transfer and Bubble Dynamics Over Plain and Enhanced Microchannels

Pool boiling is of interest in high heat flux applications because of its potential for removing large amount of heat resulting from the latent heat of evaporation and little pressure drop penalty for circulating coolant through the system. However, the heat transfer performance of pool boiling systems is not adequate to match the cooling ability provided by enhanced microchannels operating und...

متن کامل

Scale effects on flow boiling heat transfer in microchannels: A fundamental perspective

Flow boiling in microchannels has received considerable attention from researchers worldwide in the last decade. A scaling analysis is presented to identify the relative effects of different forces on the boiling process at microscale. Based on this scaling analysis, the flow pattern transitions and stability for flow boiling of water and FC-77 are evaluated. From the insight gained through the...

متن کامل

Molecular dynamics study of wettability and pitch effects on maximum critical heat flux in evaporation and pool boiling heat transfer

Molecular dynamics simulations were employed to investigate the effects of wettability (contact angle) and pitch on nanoscale evaporation and pool boiling heat transfer of a liquid argon thin film on a horizontal copper substrate topped with cubic nano-pillars. The liquid–solid potential was incrementally altered to vary the contact angle between hydrophilic (∼0°) and hydrophobic (∼127°), and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017